MATH 102:107, CLASS 5 (FRI SEPT 15)

(1) The function

$$
f(x)=\frac{x^{3}-a x^{2}}{x-a}
$$

is undefined at $x=a$. What is $\lim _{x \rightarrow a} f(x)$?
(a) 0
(b) a
(c) a^{2}
(d) a^{3}

Solution: The answer is (c). This is because

$$
f(x)=\frac{x^{3}-a x^{2}}{x-a}=\frac{x^{2}(x-a)}{x-a}=x^{2}
$$

for any $x \neq a$. When $x=a$, the function is undefined - but the limit is computed by consider values of x close to a, but not equal to a. Therefore, the limit is equal to

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x^{2}=a^{2}
$$

(2) Consider the function

$$
f(x)= \begin{cases}-1, & x<a \\ 1, & x \geq a\end{cases}
$$

What is $\lim _{x \rightarrow a} f(x)$?
(a) 1
(b) -1
(c) 0
(d) DNE

Solution: The answer is (d). This is because the limit coming from the left is

$$
\lim _{x \rightarrow a^{-}} f(x)=-1
$$

and the limit coming from the right is

$$
\lim _{x \rightarrow a^{+}} f(x)=1
$$

These are called the one-sided limits. Since they are not equal to each other, the two-sided limit $\lim _{x \rightarrow a} f(x)$ does not exist. (The function above is called a piecewise-defined function.)
(3) What is

$$
\lim _{x \rightarrow a} \frac{1}{x-a} ?
$$

(a) ∞
(c) DNE
(b) $-\infty$
(d) More than one answer is correct

Solution: The answer is (c). As $x \rightarrow a^{+}$, the function tends to $+\infty$, while as $x \rightarrow a^{-}$, the function tends to $-\infty$. Technically, neither the right-hand limit nor the left-hand limit exists, and so the two-sided limit can't exist. (But even if we declared them to be $+\infty$ and $-\infty$, they would not be equal to each other, and even then the two-sided limit wouldn't exist.)
(4) Which of the following limits DNE?
(a) $\lim _{x \rightarrow 0} \frac{1}{x+1}$
(b) $\lim _{x \rightarrow-1} \frac{1}{x+1}$
(c) $\lim _{x \rightarrow-1} \frac{x+1}{x+1}$
(d) More than one DNE

Solution: The correct answer is (b). By the previous question, that limit does not exist - just set $a=-1$ in question 3. The other two limits are

$$
\lim _{x \rightarrow 0} \frac{1}{x+1}=\frac{1}{0+1}=1
$$

by just plugging in $x=0$, and

$$
\lim _{x \rightarrow-1} \frac{x+1}{x+1}=\lim _{x \rightarrow-1} 1=1
$$

by the same argument as in question 1.
(5) What value of a makes the following function continuous?

$$
f(x)=\left\{\begin{array}{lc}
a x^{2}+1, & x<1 \\
-x^{3}+x, & x \geq 1
\end{array}\right.
$$

(a) $a=1$
(c) $a=-1$
(d) No value of a
(b) $a=0$

Solution: The correct answer is (c). The piecewise-defined function is continuous everywhere except possible at the value $x=1$. It's continuous if and only if the two pieces 'match up' at that value, i.e. only if $a x^{2}+1$ and $-x^{3}+x$ are equal to each other at $x=1$. Plugging $x=1$ into both of these expressions,

$$
a(1)^{2}+1=-(1)^{3}+1 \Longleftrightarrow a+1=-1+1 \Longleftrightarrow a=-1
$$

So $a=-1$ causes the function $f(x)$ to be continuous (while any other value of a will cause it to have a discontinuity at $x=1$).
(6) Which of the following limits exist?
(a) $\lim _{x \rightarrow \infty} x^{3}$
(b) $\lim _{x \rightarrow \infty} x^{\frac{1}{3}}$
(c) $\lim _{x \rightarrow \infty} 3^{x}$
(d) $\lim _{x \rightarrow \infty} x^{-3}$

Solution: Only (d) exists. As $x \rightarrow \infty, x^{3} \rightarrow \infty, x^{\frac{1}{3}}=\sqrt[3]{x} \rightarrow \infty, 3^{x} \rightarrow \infty$, and $x^{-3}=\frac{1}{x^{3}} \rightarrow 0$.
(7) What is the following limit?

$$
\lim _{x \rightarrow \infty} \frac{x^{5}+2 x^{4}+3 x^{3}+4 x^{2}+5 x+6}{6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1}
$$

(a) 0
(b) 6
(c) $\frac{1}{6}$
(d) DNE

Solution: As $x \rightarrow \infty$, the numerator and denominator can be asymptotically simplified to just the term of highest degree

$$
\begin{aligned}
x^{5}+2 x^{4}+3 x^{3}+4 x^{2}+5 x+6 & \sim x^{5} \\
6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1 & \sim 6 x^{5}
\end{aligned}
$$

Therefore

$$
\lim _{x \rightarrow \infty} \frac{x^{5}+2 x^{4}+3 x^{3}+4 x^{2}+5 x+6}{6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1}=\lim _{x \rightarrow \infty} \frac{x^{5}}{6 x^{5}}=\lim _{x \rightarrow \infty} \frac{1}{6}=\frac{1}{6}
$$

(8) To compute the derivative of the function $f(x)=\frac{1}{x+2}$, we need to compute:
(a) $\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+2}-\frac{1}{x+2}}{h}$
(c) $\lim _{h \rightarrow 1} \frac{\frac{1}{x+h+2}-\frac{1}{x+2}}{h}$
(b) $\lim _{x \rightarrow 1} \frac{\frac{1}{x+2}-\frac{1}{x}}{x}$
(d) $\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+2}-\frac{1}{x+2}}{x}$

Solution: The correct answer is (a). See the definition of the derivative in the notes. The expression inside the limit, i.e. $\frac{\frac{1}{x+h+2}-\frac{1}{x+2}}{h}$, is the average rate of change over the interval $[x, x+h]$, or equivalently, the slope of the secant line defined by this interval.
(9) Calculate the derivative of the function $f(x)=x^{3}-x+1$, and use this to write an equation for the tangent line at $x=0$.

Solution: Many of you know how to use the Power Rule to shortcut this derivative computation and say $f^{\prime}(x)=3 x^{2}-1$, but I will go ahead and explicitly
compute the derivative of x^{3} here to show how this goes.

$$
\begin{gathered}
\text { Derivative of } x^{3}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
=\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
=\lim _{x \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right)=3 x^{2}
\end{gathered}
$$

The derivative of the function $-x$ is -1 (because its graph is a line with slope -1 everywhere), while the derivative of the function 1 is 0 (because it's a horizontal line with no slope). Hence, the sum $f(x)=x^{3}-x+1$ has derivative $f^{\prime}(x)=$ $3 x^{2}-1$.

Plugging in $x=0$, we get $f^{\prime}(0)=3(0)^{2}-1=-1$. So the tangent line at $x=0$ has
(a) Slope -1 .
(b) Passes through the point $(0, f(0))=(0,1)$.

A line of slope -1 and passing through $(0,1)$, has equation $y-1=-1(x-0)$, by the point-slope formula. Cleaning this up a bit, we get the equation $y=-x+1$. (Note: this is what we meant in Class 2 when we said $x^{3}-x$ looks like $-x$ near $x=0$. That is the tangent line at $x=0!$)
(10) (Bonus Challenge) Use the definition of the derivative and the following hint to calculate the derivative of the function $f(x)=\sqrt{x}$. Hint:

$$
\frac{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}{\sqrt{a}+\sqrt{b}}=\frac{a-b}{\sqrt{a}+\sqrt{b}}
$$

Solution: Setting up the limit to calculate the derivative,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

Now, using the hint, we have that

$$
\sqrt{x+h}-\sqrt{x}=\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{\sqrt{x+h}+\sqrt{x}}=\frac{(x+h)-x}{\sqrt{x+h}+\sqrt{x}}=\frac{h}{\sqrt{x+h}+\sqrt{x}}
$$

and thus,

$$
\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{\frac{h}{\sqrt{x+h}+\sqrt{x}}}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}=\sqrt{x}}=\frac{1}{2 \sqrt{x}}
$$

is the derivative of $f(x)=\sqrt{x}$.

